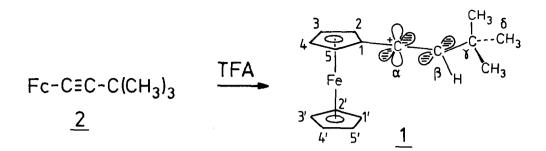
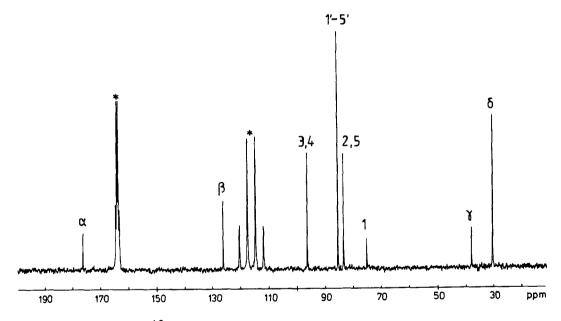
STABLE VINYL CATIONS 4:

CARBON-13 NMR SPECTROSCOPIC OBSERVATION OF AN ∝-FERROCENYL-VINYL CATION


Ernst-Wilhelm Koch, Hans-Ullrich Siehl^{*} and Michael Hanack^{*} Institute of Organic Chemistry, University of Tübingen Morgenstelle 18,D-7400 Tübingen,Germany

Abstract $^{13}\text{C}\text{-chemical}$ shift data of α -ferrocenyl-B-t-butyl-vinyl cation are compared with model compounds to give proof of hybridization and structure.


Vinyl cations are well established reactive intermediates¹ which have been observed only recently by ¹³C NMR spectroscopy.^{2,3,4} Early attempts to generate vinyl cations by protonation of alkynes under strong acidic conditions have failed to give stable species in solution because of rapid sequential inter- and intramolecular reactions.^{5,6,7} The protonation of ferrocenyl substituted alkynes with trifluoracetic acid (TFA) however led to species that were assigned vinyl cation structures from their ¹H NMR spectra^{8,9,10}. Very recently an organometallic stabilized vinyl cation was isolated as a zwitterion in crystalline form and characterized by IR and ¹H NMR spectroscopy but no X-ray data were reported¹¹. Proton NMR and IR spectroscopic data in general do not give sufficient information about the structure and charge distribution of carbocations. Especially for vinyl cations ¹³C NMR spectrocopic data are essential for an unequivocal characterization of the exact nature of the C_a-C_B-bond¹².

Bulky substituents at the ring or at the B-position increase the stability of ferrocenyl vinylcations which otherwise are captured very rapidly by the solvent to form α -trifluoracetoxy carbocations¹⁰. We anticipated the lifetime of the α -ferrocenyl-B-t-butyl-vinylcation <u>1</u>⁹ generated by protonation of 3,3-dimethyl-1-ferrocenyl-butin-1 <u>2</u> in TFA / SO₂ClF to be sufficient to obtain ¹³C-NMR spectra using contemporary instrumentation.

1493

The 100.6 MHz 13 C NMR spectrum of <u>1</u> was measured in TFA/SO₂ClF at -50 ^oC. Only eight peaks are observed (Figure 1) thus only one isomer is present which is most likely the sterically less congested cation with the t-butyl group in the exo position.

<u>Figure 1:</u> 100.6 MHz 13 C NMR spectrum of cation <u>1</u> in TFA/SO₂ClF at -50°C. (TFA peaks are marked *).

Assignments were made from specific ¹H-decoupled ¹³C NMR spectra and are given in Table 1. The ¹³C NMR data of <u>1</u> can be compared with model compounds $\frac{2-5}{2}$.

Fc-CH₂ Fc-C
$$CH_3)_2$$
 $C(CH_3)_3$
Fc-CH₂ Fc-C Fc-CH=C H
3 4 CH_3 5 H

<u>Table 1</u> $^{\circ}$ C NMR chemical shifts (ppm) of cation <u>1</u> and model compounds <u>2-5</u> .									
	C ~ a	C – ß	C – Y	C - 8	C - 1	C-2,5	C-3,4	C-1'-5'	Ref.
<u>1</u>	177.14	126.63	38.11	30.27	74.68	83.06	96.12	85.15	
2	76.37	94.65	27.90	31.26	66.59	71.14	68.01	69.77	14
<u>3</u>	88.6				111.8	85.5	95.6	83.3	13
4	178.0		19.3 ^C		100.1	76.9	94.5	81.2	13
		40.8 ^b	26.3 ^C			77.9	94.9		
<u>5</u>	121.33	139.18	33.82	29.28	84.33	66.37	68.13	69.04	14
a) β-CH ₃ , b) β-CH, c) nonequivalent γ-CH ₃ .									

Table 1 13 C NMR chemical shifts (ppm) of cation 1 and model compounds 2-5.

The signal for the cationic carbon in <u>1</u> (177.14 ppm) is similarly deshielded as in comparable dialkyklsubstituted sp²-hybridized α -ferrocenyl carbocations as, for example, in the 1,2-dimethyl-1-ferrocenylpropyl-cation <u>4</u> (178.0 ppm). The shift of C_B (126.63 ppm) indicates sp²-hybridization for this carbon, compared to sp³-hybridized B-carbons in other α -ferrocenyl cations (20- 40 ppm) and to the sp-hybridized B-carbon in the ferrocenylalkyne <u>2</u> (94.65 ppm). The C_B-signal in <u>1</u> is 15 ppm upfield compared to the C_B-signal in 3,3-dimethyl-1-ferrocenylbuten-1<u>5</u> caused by the shielding effect of the adjacent sp-hybridized C⁺-carbon in 1.

The signal for C_1 (74.68 ppm) in <u>1</u> is 10 ppm shielded compared to alkene <u>5</u> and 25 ppm compared to cation <u>4</u>. This is another evidence for sp-hybridization of the C⁺ carbon in <u>1</u> causing this shielding. The shift of C_1 in <u>1</u> is only 8 ppm to lower field compared to ferrocenylacetylene <u>2</u>.

Significant charge delocalization into the ferrocenyl moiety is evident from the downfield shift of the peaks for $C_{2,5}$, $C_{3,4}$ and $C_{1'-5'}$. The signals for C_2 and C_5 in <u>1</u> are at lower field than in all other secondary and tertiary α -ferrocenyl carbocations. C_3 and C_4 in <u>1</u> have almost the same shift than the corresponding carbons in the primary ferrocenylmethylcation <u>3</u> and the signal for $C_{1'-5'}$ in <u>1</u> is even 2 ppm more downfield. The spectroscopic data are in accord with a linear sp-hybridized vinyl cation structure for <u>1</u>. Rotation around the C^+-C_1 -bond is blocked due to efficient interaction of the cationic carbon with the ferrocenyl system either via $p-\pi$ conjugation which results in partial double bond character of the C^+-C^1 -bond or by direct C^+ - Fe interaction¹⁵. Cation <u>1</u> is thus the first stable vinyl cation generated directly by protonation of an alkyne which was characterized unequivocally by ¹³C-NMR spectroscopy giving convincing support to the ¹H. NMR studies of <u>1</u> and related cations by Abram and Watts.^{8,9,10}

This work was supported by the Deutsche Forschungsgemeinschaft

References

1) P.J.Stang, Z.Rappoport, M.Hanack and L.R.Subramanian: Vinyl Cations, <u>1979</u>, Academic Press.New York

2) H.-U.Siehl and H.Mayr, J.Am. Chem.Soc. 104,909,(1982)

3) H.-U.Siehl and E.-W.Koch, J.Org.Chem. 49,575,(1984)

4) H.-U.Siehl, J.C.S.Chem.Commun. 1984,635

5) G.A.Olah , J.S.Staral, R.J.Spear and G.Liang, J.Amer.Chem.Soc. 97,5489,(1975)

6) G.A.Olah and H.Mayr, J.Am. Chem.Soc. 98, 7333, (1976); 100, 6544, (1978)

7) G.Capozzi, V.Lucchini, F.Marcuzzi and G.Melloni, Tetrahedron Lett. 1976,717

8) T.S.Abram and W.E.Watts, J.C.S.Chem.Commun. 1974,857

9) T.S.Abram and W.E.Watts, J.Organomet.Chem. 87, C39, (1975)

10) T.S.Abram and W.E.Watts, J.C.S.Perkin I 1977,1522

11) L.I.Zakharkin and V.V.Kobak, J.Organomet. 270,229,(1984)

12) M.Hanack and H.-U.Siehl, J.Am. Chem.Soc. 102,2686, (1980)

13) S.Braun, T.S.Abram and W.E.Watts, J.Organomet.Chem. 97, 429, (1975)

14) E.-W-Koch Diplomarbeit Tübingen 1981

15) U.T.Mueller-Westerhoff, A.Nazzal, W.Prössdorf, J.J.Mayerle and R.L.Collins, Angew.Chem., Int.Ed.Engl.<u>1982</u>, 293; Angew.Chem.Suppl.<u>1982</u>, 686 and references cited.

(Received in Germany 14 January 1985)